The Weyl Problem With Nonnegative Gauss Curvature In Hyperbolic Space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Weyl Problem with Nonnegative Gauss Curvature in Hyperbolic Space

In this paper, we discuss the isometric embedding problem in hyperbolic space with nonnegative extrinsic curvature. We prove a priori bounds for the trace of the second fundamental form H and extend the result to ndimensions. We also obtain an estimate for the gradient of the smaller principal curvature in 2 dimensions.

متن کامل

The Gauss-Bonnet Formula of Polytopal Manifolds and the Characterization of Embedded Graphs with Nonnegative Curvature

Let M be a connected d-manifold without boundary obtained from a (possibly infinite) collection P of polytopes of R by identifying them along isometric facets. Let V (M) be the set of vertices of M . For each v ∈ V (M), define the discrete Gaussian curvature κM (v) as the normal angle-sum with sign, extended over all polytopes having v as a vertex. Our main result is as follows: If the absolute...

متن کامل

Dubins ’ Problem on Surfaces . I . Nonnegative Curvature

Let M be a complete, connected, two-dimensional Riemannian manifold. Consider the following question: Given any (p1, v1) and (p2, v2) in T M , is it possible to connect p1 to p2 by a curve γ in M with arbitrary small geodesic curvature such that, for i = 1, 2, γ̇ is equal to vi at pi? In this article, we bring a positive answer to the question if M verifies one of the following three conditions:...

متن کامل

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form

Let M be a complete hypersurface with constant normalized scalar curvature R in a hyperbolic space form H. We prove that if R̄ = R + 1 ≥ 0 and the norm square |h| of the second fundamental form of M satisfies nR̄ ≤ sup |h| ≤ n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], then either sup |h| = nR̄ and M is a totally umbilical hypersurface; or sup |h| = n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], and M i...

متن کامل

Parabolic surfaces in hyperbolic space with constant curvature

We study parabolic linear Weingarten surfaces in hyperbolic space H. In particular, we classify two family of parabolic surfaces: surfaces with constant Gaussian curvature and surfaces that satisfy the relation aκ1 + bκ2 = c, where κi are the principal curvatures, and a, b and c are constant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Journal of Mathematics

سال: 2015

ISSN: 0008-414X,1496-4279

DOI: 10.4153/cjm-2013-046-7